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.Eigenvalues Of Covariance Matrix For Two-Source Array processing
S.I. (Chou

NAVAL OcEAN SYS'.,S C.NiER
SAN l)i .(), CA 92152-500)

Abstract We give special treatment for eiial power arrivals be-
cause of its many unique characteristics and its importance

Figenvalue weighting appears in some noise subspace in real applications.
methods, ii parametric signal subspace fitting methods, The analytical treatment begins by reviewing the ex-
and in nonpararnetric subspace adaptive nulling beamform- pressions of the noise-free eigenvalues of the quadratic char-
ing. For a two-source array processing scenario, normalized acteristic equations of the non-Ilermitian product of the
eigenvalues' expressions A1 and A2 are reduced to forms de- temporal and spatial correlation matrix given in lludson's
pending only on a real triplet: phse-dependent variable C, text[14, pp. 52-55]. 'l'lie eigeivalues are normalized with
plhase-independent variable Y1, and power ratio 5-. ( , 71) is respect to the product of the number of sensors and the sen-
confined to an isosceles-like region. Ve characterize sor level power of the weaker source 7r2 , i.e., 7rl >_ 7r . The

* this isosceles-like region and the many-to-one mapping normalized large and small eigenvalues expressions A, and

from the Cartesian product of the temporal and spatial A2 are reduced to forms depending only on the real triplet
(C , ). lere, -1 is the power rat io between the strong
to weat sources at the sensor level. The real pair ( ,7) are

" the behavior of the eigenvalues and their ratio as finc- defined in ernis of the normalized temporal and spatial co-
tions of the real triplet both analytically and graph- eflicieuts p and 0 respectively with each constrained to a
cally with respect to array processing. unit-disk through

1. Introduction= (1 - ,'2)(I - P12),

In this paper, we discuss sone stress ,neastire to array l=(/,¢,) = p - arg ).
processing algorithmis applied to scenarios with, two sources.
'Ile word "stress" for a scenario is used to indicate the difli- Using our notation, the normalized vigenvalues assume tlhe
culty that an algorithin has in determining the direction of following form
arrival of each of the two sources. Schmidt's dissertation [1]
qualitatively pointed out tlree stressing factors to an array A, 1-

prcssn lgorit hini: ( 2 ) 7r, [7r ()~2~
1. For small or medium-sized sensor arrays, the resolu- [ (-)r]

tion is not sufficiently high so we can have unresolved x 2 1
arrivals.[ + - . 1+ ( )12]J

2. FIurthermore, high or 100% source correlation such as
from multipaths will cause ill-conditioning or rank de- Before finishing the introduction of symbols and defini-
ficiency of I he noise-free data covariance matrix. tions, we point out the importance of the sensor coordinate

origin. WIhen two arrivals are 100% correlated, the phase
3. The other stress factor to a direction-finding algorithm dilfference between the two-source signals plays an impor-

or scenario is the strengt li ratio between the two signals, tant role. 'Hie specification of this variable depends on the
ere, we use r to quantitatively combine the choice of the coordinate origin. Frequently, performance

eigenaiie a~ioss,,ch as the Cramer-hRao Lower Pound (CI1LB) is plotted
three stressing factors. Eigenvalues in weighting expressions

appear in three categories of array processing algorithms: against this variable. If two different origins are used, the
same results can be seen differently but are equivalent with

" in noise subspace methods [2,3,4], a horizontal shift and possibly with the help of 27r-modulo
wrap-aroud. Naturally, the covariance matrix and their

" in parametric signal subspace fitting methods [4,5,6,7, eigenvalues are not dependent on the choice of the origin,
8,9,10] or it:; associated nonparametric subspace beam- but the expressions for the phase angles of both the steering
forming [11, and vectors and complex source amplitudes of the signals are.

* in nonparametric subspace adaptive nulling beamform- In the special case of plane waves, an array is called

ing [12,13]. pairwise symmetric o, inverse symmetric [15] if for each
sensor located away from the origin at. position coordinates

Only [2] is about weighted noise-eigenvectors with weights (ri, y,, z.) there is also a sensor located at (-Xi, -yi, -zi).
involving the corresponding noise eigenvalues. See the re- The inner product of two steering vectors for plane waves
cent result on this in [3]. All others use weighted signal impinging onto pairwise symmetric arrays is real. For such
eigenvectors with weights involving the corresponding sig- case, the usual two-dimensional unit-disk associated with
nal eigenvalues. spatial correlation 0 degenerates into a one-dimensional one.

To appear in Conference Record of the 24th Asilomar Conference on Signals, Systems and
Computers, Nov 5-7, 1990, Pacific Grove, CA.

91 6 11 005



'I lt14, the angle dilf,'rncc between the lIemporal mid spa- \hen we iimove (Ir -trthi 0f tlme way (oward tIe base-
tiai correlation coellicients is reduced to the temporal phase line, i.e., r, > 0.25, we find max(jpI, 11) - V
difference between the two arrivals measured at the origin 0.7. The two interferers are now within half of the half-
of the symmetric array. While the discussions of eigenval- power heamwidhlh of each other.
ues in this report mire alpplicalle ICo gencric st.cering vectors, We also hole Ihat = ( I - 141!)( 1 - I/,I2) is the height of
we call ?) the pliase-independent variable and the phase- the um nshaded trapezoidal-like region. We can associate 7r2 1
dependent variable for convenience even though such names as the pro(duct of ihe areas of the two unshaded annulus re-
were motivated by the special case of plane waves impinging gions, 7r(1- 101) and r(l- pj 2 ). As this height reduces from
onto pairwise symmetric arrays. I to 0, i.e., the unshaded trapezoid decreases from the origi-

nal whole isosceles all tlhe way to the zero thickness l aseline,
2. An Isosceles Right-Triangle-Like Region at least one of the corresponding white annuli shrinks from

the original unit-disk to a zero width ring.
The phase-independent variable Y7 depends only on the When the scenario is stressful, il is small, the corre-

magnitude of p and 0. The phase-dependent variable de- sponding annuli with unit outer radius are thin. The area
pends also on the angular positions of p and 0. The mapping of the temporal correlation p annuhs can be approximated
from the complex pair (p, 0) to the real pair ( , ij) is many to by
one. The range of this mapping is an isosceles right-triangle-
like region bounded o,, its left and right by two symnetric 7r(I - pl12) = r(I + Ijp)(I - pj) g 27r(1 - Ipl).
parabolas, 71 = ( ± 1)2 , and (]own below by a straight base-
line, il = 0. We note the zero slope of each parabola where Suppose the temporal correlation coefficient has a magni-
it meets the straight line and the 900 angle that the two tuide of 99%, then the thickness of the p annulus is 0.01.
parabolas intersect each other. We characterize this region The area of the annulus can be approximated by 2r(O.01)
with respect to the temporal and spatial correlation coefli- by letting the mean circumference of the annulus assume the
cients of array processing scenarios in Figures 1 and 2. outer circumference of the unit-disk, 2r. The approximation

We will see later that among the three parameters is 99.5% accurate. If the spatial correlation coefficient has
( ,/r 2) appearing in the eigenvalues' expressions, t, a magnitude of 90%, then the thickness of the 0 annulus is

is the most important one. In the following, we use Fig- 0.1, the area of the annulus can be approximated by 2r(0.1).
tre I to characterize the many-to-one mapping from the The applroximation accuracy is 95%. We see that a combi-
Cartesian product of the two unit-disks onto the isosceles- nation of the high temporal and spatial correlations yield
like region with respect to Y. We note that for given 1, an 7 of approximately (-20 + 3) + (-10 + 3) = -24 dB.
max(jpj, I11) = - ,/j. Therefore, the apex point (0, 1) Next we use Figure 2 to characterize some special po-
corresponding to Yj = I can only come from the two centers sitions in the isosceles region. Hudson's textbook[14, pp.
of the unit-disks, i.e., p = ¢J = 0. As 71 decremtses from 1 52-55] presented 4 omit of the 17 characterizations shown
to 0, i.e., we move from the apex towards the baseline, we there. These 4 cases are denoted by the asterisks.
shade the part of the Cartesian product of the two unit- The two eigenvalues are equal if and only if what is in-
disks mapped into the correspondingly shaded area of the side the radical of the ,'igenvalue equation vanishes. It can
isosceles-like region. Therefore, as the shaded area of the be shown that for this to be true we must have 7rI/7r 2 = I

isosceles-like region expands from the apex towards the base- and that and Y7 must be on the left parabola of the
line, the shaded areas of the two unit-disks expand from the isosceles-like region. The common eigenvalue value they
centers toward the unit circumferences. share is

When we move one-fourth of the way toward the base- Ai ( , (1 + €)2) (1 + c) _

line, i.e., 7 > 0.75, we find max(Ipl, 1) = 1 - A,.75
0.36. For two uncorrelated plane wave arrivals impinging on 3.
a uniform linear array, the first sidelobe peak has a height Characterizing Eigenvalues and their Ratio
of 101 ; --.05 z 0.22. At Y7 = 0.75, the two interferers
are already within a beamwidth of each other. Let us shade We characterize the behavior of the eigenvalues and
the corresponding range and domain of this many-to-one their ratio -' as functions of the real triplet ( ,r/, i'). It is
mapping using 450 hatching lines for this Y > 0.75 region. useful to discuss the expressions for the eigenvalue and their

Similarly, when we have moved halfway toward tme ratio for the special cases at the apex, the ba-seline, and
baseline in the isoscehes-like region I? > 0.50, we find the vertical axis. But instead, we characterize the special

max(Ipl, 101) = V1 - V -. A3 ,0 , 0.54. Let us over- case of equal-strength arrivals and then the general case will

lay onto tne earlier picture by shading the corresponding be touched upon only lightly at the end.

range and domain using offset 45* hatching lines for this The small eigenvalue is shown to diminish qualita-

q > 0.50 value. We note that the pieviously 45* hatched tively and quantitatively for two-arrival scenarios increas-

region are double-hatched now. For any point in the in- iniy stressed with high temporal and/or spatial correla-

cremental area of the isosceles-like region corresponding to tions. The special case of equal strength - = 0 dB arrivals,
the singly 450 hatched but not double-hatched area, i.e., also important in low-angle radar tracking, shares many rich

0.75 > q > 0.50, at least one of the originating p or 0 must structures of general F-. It has several additional unique

be located in the correspondingly shaded incremental annu- features for signal eigenvalues' ratio - important in array
lus, i.e., 0.36 < IPI or 1_1 < 0.54. processing.



Tll( Special case of' equal streng.i 0 (1 III arrivals cornier of the isoscel's-like triange, this corner is a point of
sh:ires the following comimon featires of general 1- power discoii inniIy for (te eigeniv;ilii" ratio for t lie special case
ratios: straight line contours for conistanit eigeiivahle A's in ofeq ial strengtl h-' 0 (113. For example, the two eigenval-
Figure 3, hyperbolic A slices for constant phase-independent ties are equal over the left parabolic boundary of the isosce-
variable i1's in l'igire 1, parabolic A slices for conistalit. phase- les right-triaiigle-like region. Iirtiheriore, the two equally
dependent variable 's in Figure 5. dominant eigenvallies go down to zero jointly so that tle

However, we cauition that unless special effort is made colition nuber stays as unity throughout. That is, the
in plotting results, the two displayed surfaces or curves may condition niibers are the lowest possible there. However,
not always meet at the supposed places. This is because the both eigenvalies tend to zero as 77 tends to zero, i.e., the
boundary curves defining parabolas in the and 71 phle, in baseline of the region. The Ilinit of - iipproachiig from the
general, (to not pass through the grid points used in the baseline of the isosceles region is 0o, while that approaching
and q plane. from the left boundary curve of the isosceles region is 0.

The plots of the same information or function, using For the equi-powered case, the destructive interference
direct scale and dB scale in the vertical axis have their indi- scenario point is at the left apex of the isosceles region. Both
vidual merits. The direct-scale versions show the parabolic eigenvallies are zero and the eigenvalue ratio at this point
and hyperbolic sections as well as the straight line contours is of the 0/0 form. This point corresponds to the total can-
in their natural coordinates as derived from the analytical cellation of signals at the sensor element level. The total
studies. Versions using the dB scale better illustrate the cancellation happens not only at tle center of the array but
multiplicative dependence of the eigenvalues on some of the at every sensor. The two steering vectors co;.,-;ah and the
three independent parameters. In addition, the effect of the temporal waveforms negate each other completely. Con-
smallest dominant eigenvalue is relative to the threshold set- sider two strong sources behaving this way. As the power is
ting, which is frequently expressed in dB scale; the condition measured by turning off one source at a time, so the equal

number can be exhibited :nore compactly in this way. power are considered as high and CI3.3 and asymptotic
As Y/ approaches 0, the small eigenvalue A2 and the results apply when noise is taken into consideration.

eigenvalue ratio - tend toward - and + oo dl, respec- We focus attention to the condition number's behavior
tively. Similarly, as 7 approaches 0 for the equi-power case, over the vertical axis € = 0 of the isosceles region. For the

= 0 dB, both the upper A1 and lower A2 hyperbolas tend special case of equal strength 5 = 0 d1, there is an extra

toward their asymptotes intersecting at -oo (11. Since we 6 dl1 for signal cigenvalues' ratio 1 over the vertical axis
cannot display ±oo dl, we choose to stop at a small value = 0 accounting for the presence o? an infinite slope of Vs
of 17 = -13 dB, which corresponds to spatially orthogonal with respect to q7 at the apex for the equal-power arrival
arrivals with temporal correlation of 97.5%, or temporally case. This is reflected in the following two approximations.
uncorrelated arrivals with a fractional beamwidth spacing Vhen 5 > 10 dB, we have
for a uniform linear array.

We first display for power ratio 1 = 0 dB1 tie slices A(in (1i) -r)( in dl1) - rj(in dl1).
of the two signal eigenvalues A, and A2 in dB for constant A2  (r,

phase-independent variable 17 in Figure 6, and for constant When 1 z 0 dPl and i is less than 0.10 (or -10 dB), we
phase-dependent variable in Figure 7. While the parabola have
sections are all translation copies of each other for given -A T (in d11) -r)(in d11) + 6.
values in the direct scale coordinates, their images in the dB 2

scale are qualitatively different because of the nonlinear na- See Figures 12 and 13.
ture of the logarithmic function, especially near zero, which The variation of signal eigenvalie ratio across the
is so important for our study. Next their ratio, which is the phase-dependent variable is not significant. For the special
difference in dB of the large and small signal eigenvalues, case of equal strength ! = 0 d1, there is a 4-time or 6 dB
are displayed in Figures 8 and 9. increase on tle eigenvalhe ratio -A for highly correlated equi-

We expect the slices of the eigenvalue ratio -" surface power arrivals both temporallya
A poe riasbteprlyandh spatially from changing

for all constant 17, phase-independent variable, and for neg- the phase of the source correlation or the angle difference
ative constant , phase-dependent variable, to intersect the between the two unit-disk vectors from 900 to 00.
0-dB abscissa axis. Again, they do not appear to be so only As power ratio 5- increases from unit value, the vari-
because of the coarse grid systems used in makiig these ation of the large eigenvalie A, is essentially along the di-
plots, i.e., the left boundary curve of the isosceles region rection of the horizontal phase-dependent variable . The
does not fall on the grid points, smaller eigenvalue A2 is independent of both the horizon-

Mesh plots and parabolic contours for eigenvalue ra- tal phase-dependent variable and 5- near the baseline
tio -A are shown in Figures 10 and 11 respectively. The for large 5- but is a strong function the vertical phase-

A2 7

contours of the eigenvalue ratio = I form a one- independent variable Y7. The effect of I is essentially only
parameter family of parabolas having th'ir vertices colo- felt by the large eigenvalue which is not sensitive to whether
cated at (C, 77) = (-1,0), i.e., at the lower left, corner of the tlie scenario's ( , 71) coordinate is close to the baseline, i.e.,
isosceles-like triangle and their common tangent the base- whether the arrivals are correlated or close to each other as
line rq = 0. This family includes the left boundary of the far as its order of magnitude is concerned.
isosceles-like triangle and the baseline. Because the contours We have used these results for assessment of scenarios
of the eigenvalue ratio \ = ; pass through the lower left in [161 for which this paper is a synopsis.
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